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The right ventricle has become an increasing focus in cardiovascular research. In this position paper, we give a brief overview of the
specific pathophysiological features of the right ventricle, with particular emphasis on functional and molecular modifications as well as
therapeutic strategies in chronic overload, highlighting the differences from the left ventricle. Importantly, we put together recommendations
on promising topics of research in the field, experimental study design, and functional evaluation of the right ventricle in experimental models,
from non-invasive methodologies to haemodynamic evaluation and ex vivo set-ups.
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Introduction
While for centuries the right ventricle (RV) was forgotten, in recent
years it has become a priority in cardiovascular research. The RV
has a fundamental prognostic relevance and plays a crucial role in
pulmonary hypertension (PH). Additionally, a growing population
with corrected congenital heart disease in whom the RV is the
main concern now presents itself to the clinician. The development,
anatomy, and function of the RV myocardium as well as its response
to pathology and therapy are markedly different from those of
the left ventricle (LV),1 thus the RV cannot be comprehended
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.. simply by extrapolating knowledge on LV physiology. An awareness

statement of the National Heart, Lung, and Blood Institute with
the focus on the RV was made in 2006;2 after several years, in
this position paper we discuss new topics in the growing field of
RV research and we lay out recommendations for experimental
functional evaluation.

Right ventricular physiology
RV development and anatomy are briefly reviewed in Figure 1 and
Table 1. The main role of the RV is to pump blood through the lungs
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Figure 1 Right ventricular development and anatomy. The heart primordium is a tubular structure. A complex process of looping conducted
by left–right (L–R) patterning transforms it into a highly asymmetric four-chamber completely septated mature organ. The right ventricle is
the last component to develop, and may partly derive from a second heart field. Establishing two circulatory systems was essential to terrestrial
life adaption and homeothermy (A). The right ventricle is composed of a sinus and an infundibulum. The latter is recognizable at early stages
of phylogenetic development, whereas the former can only be identified in vertebrates adapted to air breathing, constituting the main right
ventricular pump element (B). In contrast to the left ventricle, the right ventricular sinus has only two layers of myocardium, an inner longitudinal
and an outer circular layer (C). O, outflow tract; RV, right ventricle; LV, left ventricle; A, atrium; RA, right atrium; LA, left atrium; Ao, aorta;
PA, pulmonary artery; PV, pulmonary valve; TV, tricuspid valve.

for gas transfer. The unique pulmonary vascular territory receives

the whole cardiac output (CO) with a low resistance; therefore,

RV developed pressure and energy cost of contraction are much

lower than in the LV (Figure 2) which translates into thinner walls

and lower mass.3 Lower pulmonary artery (PA) pressures (PAPs),

however, also entail an increased pulsatile and wasted oscillatory

power component (Figure 2).4 Moreover, low pressure and thoracic

location make the RV remarkably sensitive to respiratory fluctu-

ations. Inspiration conspicuously extends ejection, giving rise to

physiological splitting of the second heart sound. The compliant RV

adapts well to preload but is less responsive in terms of inotropy.1

Several compensatory mechanisms boost RV performance. Higher

volumes reduce excursion needed to achieve any stroke volume

(SV).3 Low resistance of the pulmonary vascular bed eases ejec-

tion and hastens pressure fall. Indeed, PAP drop lags behind RV

pressure fall, the momentum of RV SV maintains flow against the

gradient during this ‘hangout period’, and the dicrotic notch [pul-

monary valve (PV) closure] is delayed (Figure 2). Moreover, the LV

substantially contributes to RV performance due to the presence ..
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. of shared fibre bundles, attachment to the interventricular septum
(IVS), and pressure transmission through the IVS.

Influence of gender and hormones
on right ventricular structure
and function
Hormonal influences have been recently investigated in the large
cardiovascular disease-free ethnically and racially diverse cohort
of the Multi-Ethnic Study of Atherosclerosis (MESA-RV study).
Women’s RV ejection fraction (EF) is ∼7% higher than that of
men, whereas RV mass and volume are lower. Oestradiol levels
correlate positively with RV systolic function in post-menopausal
women under hormone replacement therapy, suggesting a clini-
cally relevant improvement, while androgens are associated with
increased mass in both men and post-menopausal women.5 Para-
doxically, though female gender is the clearest risk factor for idio-
pathic pulmonary arterial hypertension (PAH), men have worse
outcome.6
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Table 1 Comparative features of right and left
ventricular anatomy

Right ventricle Left ventricle
. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .

Shape Complex: triangular (side
view) and crescent
(cross-section)

Simple: ellipsoid

Location Anterior (substernal) Posterior
Semilunar and AV

valves
Separated by myocardium Continuous

AV valve More apical implantation,
tricuspid

More basal
implantation, bicuspid

Inflow and outflow
tracts

Nearly at right angles Almost at 180∘ to each
other

Interventricular
septum

Right convexity

Mass Lower (1/6) Higher
Volume Higher Lower
Papillary muscles >3 2
Trabeculations Coarse Fine
Muscle layers 2 3

Anatomic features of the right and left ventricles are compared.
AV, atrioventricular.

Acute and chronic response
to hypoxaemia
Severe hypoxia has a well-recognized myocardial depressing effect,
and hypoxic pulmonary vasoconstriction would be presumed
to induce major functional changes. Strangely, despite anecdotal
reports of acute RV failure, healthy lowlanders show only mildly
impaired diastolic function indexes after acute acclimatization7 and
dogs respond to acute hypoxia with preserved RV function and
ventriculo-vascular coupling (VVC).8 After acclimatization, tissue
needs will ultimately be met by adaptations such as increased
oxygen extraction and polycythaemia. RV function is reasonably
preserved despite the high PAP, though maximum achievable CO
during exercise may be jeopardized by low RV reserve.9

Response to exercise
and influence of chronic physical
activity on right ventricular
structure and function
The RV and pulmonary circulation responses to exercise have been
extensively reviewed elsewhere.10 With endurance training, the
degree of LV and RV volume and mass increase is comparable
and proportionate to maximum O2 consumption. An indepen-
dent correlation between physical exertion and RV volume and
mass has been demonstrated in a large untrained population.11

Dynamic exercise can markedly increase CO and PAP. Ultraen-
durance athletes may show acute myocardial injury and transient
RV dysfunction,12 but Olympic athletes have no long-term distur-
bances of RV function indexes,13 suggesting that any injury induced
by excessive exercise is rapidly reversible.12 Benefits from exercise
training have been recognized in stable but not end-stage experi-
mental and clinical PH.14,15 ..
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.. Right ventricular hypertrophy
and failure
Despite compensatory mechanisms, the RV is unable to cope with
suddenly imposed afterload, and dilates.1 Chronic volume over-
load is better tolerated than pressure overload. The latter usually
advances swiftly towards failure unless it is imposed on a previ-
ously hypertrophied myocardium.16 The chronically overloaded RV
adapts by way of hypertrophy, preload reserve recruitment, geo-
metric adaptation,17 and change of activation sequence.18 The RV
increases its developed pressure and wall stress (WS) in order
to preserve CO against increased pulmonary vascular resistance
(PVR).17 The fundamental determinants of survival are not PAP or
PVR, but rather RV function and CO;19,20 symptoms may develop
without correlation to PAP that may actually decrease as disease
progresses (Figure 3). RV failure should be viewed as a state of
mechanical uncoupling. The concept of VVC was first applied to
the LV from pressure–volume (P–V) loop analysis. An index is
obtained from the ratio between ventricular and arterial elastances:
the end-systolic (ES) elastance (Ees) to effective arterial elastance
(Ea) ratio. The RV normally operates at values that confer optimal
efficiency. Lower values denote progressively less efficient work,
but a clear mismatch which jeopardizes stroke work is only evident
for values <1 (Figure 3).21 Disproportionate increases in the oscil-
latory power fraction that contribute to LV inefficiency in systemic
arterial hypertension have been ruled out in PH.4 Nevertheless,
the high ratio of pulsatile work accentuates the need for treat-
ment strategies that improve arterial elasticity and discloses the
incompleteness of PVR in RV afterload assessment. Flow is con-
strained by backward wave reflection from the whole pulmonary
vascular bed. To describe all forces that dynamically oppose RV
ejection, the full pulmonary vascular shifting pulsatile pressure and
flow impedance spectrum must be analysed. Although elaborate,
this analysis uncovers fundamental changes in proximal vessel stiff-
ness that are associated with RV function independently of PVR.22

Underlying molecular features
The RV myocardium undergoes complex molecular and cellu-
lar changes during adaptation to overload.2,17 Since development,
anatomy, and physiology differ substantially from those of the LV
it is likely that RV myocardial remodelling may assume particu-
lar features. Interestingly, based on microRNA (miR) sequencing,
these novel and fundamental orchestrators of cardiac function
seem to be unevenly distributed amongst cardiac structures,23

clearly supporting that miR biology and therapeutic targetability
will probably be distinctive in the RV. This field of knowledge mer-
its intense future research. The progression towards dysfunction
is heterogeneous amongst patients, possibly owing to genetic pre-
disposition and the extent of neuroendocrine and inflammatory
activation. A key concept is that mechanisms other than pres-
sure overload must be involved, since PA banding (PAB) usually
courses without RV failure. Ischaemia, energy depletion, and fibro-
sis have been proposed.17 Indeed, RV mechanical inefficiency was
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Figure 2 Comparative features of right and left ventricular cardiac physiology. Right ventricular (RV; black) and left ventricular (LV; grey)
tracings are compared. RV action potential has a faster repolarization period (A), and elicits a smaller magnitude calcium transient compared
with the the left ventricle (D). RV developed pressure is minor; pressure drop initiates earlier in systole while pulmonary artery pressure is
sustained during a ‘hangout period’ (*) compared with the left ventricle. Likewise, the fraction of oscillatory power is higher in the right ventricle
as seen by the greater pulse pressure to developed pressure ratio (B). The pressure derivative (dP/dt) in the right ventricle conspicuously shows
smaller peaks with a jagged contour (arrows) reflecting LV activity. Of note, dP/dt fall initiates earlier and most of the pressure fall takes place
before the minimum dP/dt (E). A corresponding representation can be seen in a phase plane plot (F), whereas the pressure–volume loop
evidences higher RV end-diastolic volumes, lower ejection fraction, and lower stroke work compared with the left ventricle (C).

recently found to be strongly related to worsening RVEF in idio-
pathic PAH. In contrast to the healthy high O2 extraction reserve,
RV O2 extraction is excessive in PAH patients even at rest, whereas
O2 expenditure becomes ineffective. Altogether, these findings sug-
gest that myocardial metabolism may be a potentially relevant tar-
get in RV failure.24 Many molecular pathways pinpointed in RV
hypertrophy converge on increased protein synthesis and apop-
tosis resistance by activation of mammalian target of rapamycin.25

Prompt molecular responses to acute overload may explain why
RV dysfunction persists despite pressure relief and raise the possi-
bility for early therapeutic intervention.26 Apoptosis and cell pro-
liferation are both activated. Survival signals are initially favoured,
but lost when dysfunction ensues. Other key turning points are
uncontrolled oxidative stress, impaired mitochondrial function and ..
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. biogenesis, and disrupted redox regulation.27 Finally, although beta-
adrenergic signalling becomes impaired, the use of beta-blockers is
not indicated and is poorly tolerated in RV dysfunction.28 Recently
a proof of concept research questioned this, deserving future
exploration.29

Right ventricular dysplasia or
cardiomyopathy
A separate form of RV cardiomyopathy is RV dysplasia (RVD),
an inherited rare cardiomyopathy characterized by its propen-
sity towards arrhythmia. Though imaging modalities also detect
LV changes, most cases particularly target the RV. The patholog-
ical hallmark is fibro-fatty replacement, wall thinning, and dilation.
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Figure 3 Progression towards right ventricular (RV) failure in pulmonary hypertension. Representative pressure–volume (P–V) and RV and
pulmonary arterial pressure (PAP) tracings are shown. The healthy right verntricle (A) develops low pressure because it ejects against a
remarkably low resistance, as denoted by the low effective arterial elastance (Ea). During chronic adaption to high afterload (high Ea) as in
PH (B) the right ventricle becomes hypercontractile, as appreciated by higher end-systolic elastance (Ees), and thus able to develop unusually
high pressures maintaining ventriculo-vascular coupling (VVC; Ees:Ea), cardiac output (CO), and EF, although it slightly dilates. The RV P–V
loop shape becomes similar to that of the left ventricle, PAP pulse increases, the hangout period is lost, and the dicrotic notch is accentuated.
Still, the oscillatory component remains unaltered, as seen by an unchanged ratio between PAP pulse and RV developed pressure. During the
transition towards RV failure (C), impaired RV contractility worsens VVC and makes the right ventricle unable to continue to generate such
high pressures; thus PAP falls, CO and EF drop, and the right ventricle further dilates.

Diagnostic criteria have been revised, reinforcing the role of mag-
netic resonance imaging (MRI) and mutation detection.30 Mutations
in desmosomal and non-desmosomal proteins might be respon-
sible for the underlying disturbances in cell–cell contact which
may be hastened by haemodynamic load and exercise training.31

Genetic and environmental influences may favour RV involvement.
The pathophysiology has been increasingly investigated in animal
models.32

Ventricular interdependence and left
ventricular function in right ventricular
overload
RV dilation has dramatic consequences on WS and oxygen demand,
and eventually leads to tricuspid regurgitation (TR), which further
dilates the RV.2 Patients with PH show prolonged RV contraction
and dyssynchrony due mainly to electrophysiological remodelling
rather than right bundle branch block.33 Asynchronous contraction
disturbs RV ejection.33 RV pacing can re-synchronize the time of
LV and RV peak pressures, improving RV function.34,35 Lingering
diastolic RV pressures and dilation paradoxically leftward shift the
IVS, delaying mitral valve opening and hindering early LV filling. LV
underfilling may also be due to decreased RV output, and intrinsic
LV mechanisms of dysfunction have been described.36 A low CO
will further compromise RV perfusion and may precipitate fatal
events.1 ..
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. Systemic consequences of right
ventricular failure
RV failure can be defined as a complex syndrome of inability to
fill or eject, which manifests itself by fluid retention, low CO,
and arrhythmia. These have important consequences, such as
neuroendocrine and inflammatory activation and cardiac cachexia,
which further contribute to deterioration.37,38 Furthermore, in
PH and progressive RV dysfunction, baroreflex becomes impaired,
contributing to further cardiac distension.39

Therapeutic approaches to right
ventricular failure
Preserving perfusion is crucial to uphold RV function. Preload
and LV performance are other cornerstone determinants of RV
function. While moderate volume loading improves performance,
excessive load impairs CO through ventricular interdependence.
General measures to reduce afterload, such as prevention of
hypoxaemia and hypercapnia, to optimize tissue O2 delivery, such
as maintenance of haematocrit, as well as to uphold sinus rhythm
are recommended.40 These measures are insufficient in many cir-
cumstances, however, warranting pulmonary vasodilators. During
the last decades, a substantial research effort to treat PAH yielded
new effective PA vasodilators. Meanwhile, the research community
became increasingly aware of the role of RV function and of the
impact of PH of other aetiologies.19 Paradoxically, we know very

© 2014 The Authors
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little about the impact of PA vasodilators in the myocardium.17,38,41

Bosentan improves CO and RV systolic function in PAH.42 Sildenafil
increases CO and reduces RV mass and dilation, partly due to direct
myocardial antihypertrophic effects.43 The increased recognition of
the pathophysiological and prognostic role of RV function advises
new approaches targeting the myocardium. Growing research in
experimental animal PH has focused on the RV as a therapeutic
target, with promising results for beta-blockade 29 and metabolic
modulation,44 but there is still no translation to the clinics. Low
dose dobutamine increases CO and decreases PVR without periph-
eral vasoconstriction, faring better than norepinephrine in RV fail-
ure. Inodilator drugs such as phosphodiesterase type 3 inhibitors
and the calcium sensitizer levosimendan, and RV support devices
may constitute other important approaches.40

Functional evaluation of the right
ventricle
Overview of imaging methods in right
ventricular evaluation
The location, complex geometry, and morphology of the RV make
it particularly difficult to assess by imaging modalities. Echocar-
diography is the most used and first-line modality. Guidelines
have been recently endorsed by the European Association of
Echocardiography.45 The main concern with echocardiography is
the inadequacy of geometric assumptions. Currently cardiac MRI
is considered as a reference method for RV volume and function
assessment with high reproducibility. MRI and contrasted chest
computed tomography may constitute important complements in
RV assessment although reference values have not been validated
and their application is not widespread. Non-volumetric meth-
ods have expanded the possibilities of echocardiography. Tricus-
pid annular plane systolic excursion, which takes advantage of the
predominant RV longitudinal shortening, correlates variably with
RVEF and is highly load dependent, while myocardial acceleration
during isovolumetric contraction assessed by tissue Doppler is a
load-independent index of contractility which correlates well with
Ees in the physiological range. Myocardial performance (or Tei)
index evaluates overall performance. New imaging modalities and
echocardiography indexes are increasingly used in animal research
as steps towards non-invasive evaluation.46 High-resolution cine-
MRI and echocardiography using high-field strength technology and
high-frequency probes, respectively, have allowed not only a bet-
ter assessment of RV anatomy but also a non-invasive evaluation
of function.46,47 Although still quite expensive and not widespread,
they will hopefully allow serial monitoring of function devoid of
deep anaesthetic and surgical interference. MRI has been increas-
ingly used to evaluate the RV in mouse models.48 PA compliance can
be estimated by its flow contour. With PH, PA flow contour pro-
gressively loses its roundness and symmetry, becoming triangular,
it shortens acceleration time (PAAT) and develops an early systolic
notching due to wave reflection. CO measured by either echocar-
diography or MRI correlates well with thermodilution, whereas
PAAT correlates inversely with mean PAP.46 Estimation of systolic ..
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.. PAP from the velocity of TR based on Bernoulli’s equation that
is customary in the clinic is rarely feasible in rodent models due
to late appearance and technical limitations. Although it requires
good time resolution, balanced gain-scale settings, and correction
for cycle or ejection length, PAAT is a reliable alternative for PAP
estimation in animal models.47

Right ventricular biomarkers
Levels of NT-proBNP relate to the progression of RV dysfunction
and identify subgroups with worse prognosis.49 Matrix metallo-
proteinase 9 levels are independently associated with lower mass
and RV end-diastolic (ED) volume, whereas plasminogen activator
inhibitor-1 levels are related to decreased EF, insinuating subclin-
ical increases in PVR.50 Novel miR-based biomarkers might soon
be available, but those shown useful in LV failure may not behave
as such in RV failure, as demonstrated for systemic ventricles after
atrial repair for transposition of the great arteries.51

Exercise testing
Although exercise performance may be conditioned by respiratory
effort, lung pathology, muscle mass wasting, and deterioration of
whole body metabolism, it has understandably been used to assess
functional status in RV disease models because it is analogous to
the 6 min walk test or the cardiopulmonary exercise test. Both
voluntary and mandatory endurance tests have been used.14,52,53

While in humans cardiopulmonary testing at maximal exertion
provides valuable insights into RV and cardiac function,15 the
equivalent testing has not been performed in animal models.

Haemodynamic evaluation
Most invasive evaluations are not compatible with serial follow-
up. Even so, telemetry monitoring of PAP has been described after
thoracotomy in rodents.54 Less invasive methods of catheter place-
ment in the PA and RV through trans-diaphragmatic and jugular
vein approaches have also been reported.46,55 Though technically
demanding and prone to several caveats, catheter-based meth-
ods are the gold standard in pressure measurement. PAP is fre-
quently estimated from RV pressure, and PVR can be derived by
further measuring CO and considering left atrial pressure negli-
gible. Optimally, measurements should be made in closed-chest
unanaesthetized animals because deep anaesthesia and open thorax
without adequate fluid replacement can easily lead to underestima-
tion of CO, but an open-thorax approach is preferable to assess
RV function independently of ventricular interaction. RV pressure
curve analysis can be particularly informative, but interpretation
requires caution. No extrapolations should be made from LV expe-
rience. Pressure fall is remarkably different in the RV. Pressure
derivative (dP/dt) becomes negative soon after maximal pressure,
suggesting an early start of relaxation, whereas actual isovolumet-
ric relaxation period starts later due to the hangout period. The
time from onset to maximum rate of pressure fall (dP/dtmin) occu-
pies nearly two-thirds of the duration of pressure fall and therefore
most of relaxation takes place before dP/dtmin in the RV. Thus the

© 2014 The Authors
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time constant of isovolumetric relaxation 𝜏 is not as represen-
tative of relaxation in the healthy RV.56 The differences between
ventricles may be due to distinct baseline loading conditions and
differences in vascular impedance. Nevertheless, when RV after-
load is raised, the pattern of RV pressure fall shows marked load
dependency and becomes similar to LV pressure fall.56 Also in sys-
tole, the positive phase of dP/dt shows a wide and commonly
double-peaked contour in which the early component is ascrib-
able to LV contraction. The RV shows a remarkable capacity to
increase its contractility in response to afterload compared with
the LV, as manifest by load dependency and marked increases in the
relationship between dP/dtmax and ED dimensions.56 This capacity,
which is mainly due to homeometric autoregulation, helps preserve
VVC in moderate chronic PH.21 Measures of volume or flow must
be employed to estimate filling and performance. Echocardiogra-
phy or imaging methods can be applied non-invasively but not in
a real-time beat-to-beat basis. Thermodilution or flow measure-
ment with transit time or electromagnetic probes are gold standard
invasive methods that can be performed simultaneously with pres-
sure recordings to quantify CO but are not informative on RV
volume. Various methods have been employed to estimate RV vol-
ume jointly with pressure. Biplane cineventriculography with subse-
quent reconstruction of P–V loops, thermodilution PA catheters,
real-time 3D echocardiography reconstruction, along with pres-
sure recordings57 and single beat estimation of isovolumetric RV
pressures and MRI evaluation within 2 days58 have been used in the
clinical setting. Nevertheless, some assumptions underlying these
methods may not be valid in PH. Undoubtedly the conductance
methodology is the ideal approach to obtain the RV ES and ED P–V
relationship-derived load-independent indexes, which convey fun-
damental information on myocardial function. To our knowledge,
the conductance technique for continuous real-time RV volume
measurement has only been employed anecdotally in the clinical
setting.59 Legitimate questions may be raised regarding the applica-
tion of this methodology to the RV, because of its coarse trabec-
ulations and complex geometry, and because ES determination is
prone to error in triangular shaped loops.8 Briefly, complex geom-
etry makes it almost impossible to scope RV volume fully by con-
ductance; therefore, choice of catheter length, route of insertion,
and positioning should be cautiously considered and CO should
be determined by an independent method to calibrate for field
inhomogeneity. Also, loss of electric current to neighbouring struc-
tures can be more pronounced, thus parallel conductance should
be meticulously determined. Nevertheless, during the last decade,
real-time measurement of RV volumes by conductance catheter
has been widely validated in animals.60 Load-independent ES and
ED P–V relationship-derived indexes originally validated for the LV
have been extensively validated for RV analysis as well, and are now
widely used as an ideal mean to assess systolic and diastolic RV
properties in experimental research.61 Moreover, in vivo haemo-
dynamic assessment enables pharmacological stress testing with
dobutamine.52,61 ..
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.. Animal and experimental research
Although no model fully recapitulates human PH, they provide
invaluable insight into its pathophysiology and therapeutics.62

Monocrotaline-induced PH is a simple, reproducible model of
progressive pulmonary vasculopathy that reasonably mimics PAH
and RV failure accompanied by extensive neuroendocrine and
inflammatory activation and cardiac cachexia.37 The main concerns
regarding this model are a systemic toxic endothelial effect, which
probably also induces myocarditis, a high mortality rate, and a lim-
ited reproducibility in mice.63 PH in response to chronic hypoxia
also involves a local inflammatory response but does not progress
to severe PH and RV failure, with the exception of fawn-hooded
rats. Slight model modifications have been implemented in order
to better reproduce severe human PH, such as the administra-
tion of vascular endothelial growth factor receptor inhibitors and
concomitant hypoxia, which is gaining increasing acceptance.62 A
common denominator of most studies is the preferential focus on
lung vascular remodelling over RV evaluation. Depending on the
timing of intervention, degree of constriction, and animal species,
the surgical model of RV pressure overload induced by PAB may
either reveal a compensated hypertrophic phenotype with pre-
served CO, no dilation, and markedly increased systolic function
indexes,61 consistent with the clinically compensated long-term
evolution of patients with systemic RV,64 or dilation and low CO.52

Experimental models employed to mimic acute PH accompanying
pulmonary thrombo-embolism are intravenous injection of clots
or exogenous material such as microspheres. Vascular occlusion
suddenly increases PAP, injuring the RV by stretch, ischaemia, and
inflammatory response, particularly in the outflow tract.65 Many
other animal models have been used to assess RV dysfunction sec-
ondary to left heart, pulmonary, and congenital pathologies, as well
as right-sided valve disease, but a detailed discussion is beyond the
scope of this position paper.48,62

Ex vivo evaluation
Although the original set-up was developed for LV evaluation, it
is possible to insert a balloon in the RV along with a catheter
tip manometer in a modified Langendorff preparation. This set-
up enables evaluation of RV function without the influence of
pericardium, systemic mediators, autonomic nervous system, and
changing coronary perfusion. Simple analysis of pressure trac-
ings allows the acquisition of relaxation and contractility indexes,
but the capability to modify balloon volume or rate of elec-
trical stimulation further permits the acquisition of P–V and
pressure–frequency relationships. Additionally, if an LV balloon is
coupled to the set-up, it will also enable the assessment of ven-
tricular interaction.35,52 In a new development, Piao et al. have
described a modified Langendorff preparation with working RV and
simultaneous assessment of pressure, ejection, and RV work that
allows acute pharmacological testing in the intact RV.44 Many stud-
ies addressing modulation of myocardial function have been con-
ducted in RV papillary or trabecular muscles due to their favourable
morphology. These methods are used to evaluate function devoid
of geometric or systemic confounders. When assessing the car-
diomyocyte, the extracellular matrix component is also excluded.
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Direct comparisons between RV and LV isolated myocytes reveal
important differences.66

Systems biology approach
Unbiased discovery approaches that are not limited to known
molecules of presumed importance are pivotal to interrogate
differences between the RV and LV at a molecular level. ‘-Omics’
methods enable screening of thousands of molecules with-
out a priori assumptions. Transcriptomics and next-generation
sequencing—the analysis of mRNA and also non-coding
RNAs—can provide information on cellular activity, but they
only provide a snapshot of gene expression. In comparison,
proteomics—the analysis of proteins—offers the distinct advan-
tage that the actual protein content in the tissue represents the net
effect of protein synthesis and degradation. Also, certain proteins,
i.e. components of the extracellular matrix, accumulate over time.
The Human Protein Atlas project (www.proteinatlas.org) aims
to generate antibodies to all proteins encoded by the human
genome and to probe in vivo protein location in different tissues.67

Nonetheless, different areas, in particular the RV and LV, are
not compared. Importantly, there are inherent limitations of
antibody-based detection of proteins such as antibody specificity
and epitope masking. Negative immunostaining does not neces-
sarily indicate the absence of a protein. The epitope may simply
be masked. Mass spectrometry-based proteomics can investi-
gate protein changes without the constraints of antibody-based
detection.68

Conclusion
We believe that research on RV development, anatomy, physiology,
and cell biology must continue to be fostered, keeping in mind
that the RV is clearly distinct from the LV. Elucidating mechanisms
of disease progression from compensated hypertrophy to failure
is a major goal. Specific research on the effects that new PA
vasodilator drugs have on RV function and remodelling is needed.
New therapeutic approaches to treat PH should take into account
RV function and remodelling; therefore, all studies should assess
RV effects in detail. New drugs, devices, and gene or cell therapy
that target the RV are awaited. When assessing RV function, an
integrative approach from the ex vivo cardiomyocyte to the in vivo
intact organism should be pursued, combining imaging methods
with functional records and relevant post-mortem data such as liver
weight and pleural effusion. To enable repeated acquisitions with
minimum disturbances of physiology, lines of research that validate
non-invasive RV function measurements or its surrogates should
continue to be followed. Moreover, due to important interactions
between ventricles, LV function or at least systemic pressures
should be concomitantly evaluated. Gender differences in RV
physiology and their contribution to the pathogenesis of disease
have been poorly explored as has the impact of exercise training
on the prognosis of patients with PH whatever the aetiology. These
topics deserve further research. ..
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